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Abstract. We calculate the nonlinear phase shift acquired by a laser beam in 
propagating through a one-dimensional photonic bandgap material, that is a 
material in which the linear refractive index is periodically modulated along the 
direction of propagation. We find that the nonlinear phase shift shows reso- 
nances for laser frequencies close to the edge of the stop band of the photonic 
bandgap structure. Enhancements of the nonlinear phase shift compared with 
that of a homogeneous nonlinear optical material by a factor of approximately 
five are predicted under realistic laboratory conditions. We find that similar 
enhancements of the two-photon absorption rate can occur for a material with 
an imaginary nonlinear susceptibility. We also treat the case of a photonic 
bandgap material containing a ‘defect,’ that is a central region somewhat too 
thick to conform to the periodicity of the system, and find that the nonlinear 
phase shift can be enhanced by a factor of approximately thirty. 

1. Introduction 
A photonic bandgap (PBG) structure is a material system that prohibits the 

propagation of electromagnetic radiation over some range of wave-vectors. In- 
cident radiation with these wave-vectors will be almost entirely reflected because 
of the interference properties of radiation within the structure. PBG structures can 
be constructed in one, two and three dimensions. Here we consider only the one- 
dimensional case as it is the simplest to examine and construct and yet still is 
potentially useful. The principles involved in one-dimensional structures can be 
extended to higher dimensions, however. 

The properties of a PBG material can be engineered by selecting proper 
materials for the constituents and by altering the mechanical structure. A widely 
analysed one-dimensional structure is a periodic multilayer of two materials 
possessing different linear optical properties and whose optical layer thicknesses 
are near a quarter-wavelength [l]. Interesting nonlinear effects can occur in these 
PBG structures as will be discussed below. Others have studied spontaneous 
emission rates [2-51 and enhanced gain in a PBG laser [6]. Higher dimensional 
arrays of spheres or cylinders have been shown to have PBG behaviour [2, 7, 81. 
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1062 R. L. Nelson and R. W .  Boyd 

Enhanced nonlinear properties of periodic dielectric structures were predicted 
as early as 1970 by Bloembergen and Sievers [9], and later by Tang and Bey [lo], 
who introduced the idea of harmonic phase matching by using the optical 
properties of multilayers. Second-harmonic generation (SHG) has been investi- 
gated by a number of workers in various types of multilayer structure. Enhance- 
ment of the reflected second harmonic was observed experimentally in a 17-layer- 
pair structure [l 13 where the fundamental was tuned to the middle of the PBG stop 
band providing for strong counterpropagating beams. Enhanced SHG using a 
defect in an otherwise periodic structure has been investigated theoretically and 
experimentally [12, 131 and was also experimentally demonstrated in a vertical 
cavity geometry of GaAs/AlAs multilayers combined with a SiO2/TiO2 distributed 
Bragg reflector [14]. Enhancement of SHG in fibre Bragg gratings was also the 
subject of recent work [16]. 

Enhanced SHG in a one-dimensional PBG structure without accompanying 
cavity modes was demonstrated numerically for large-index modulated structures 
with a pulsed incident fundamental [17] and theoretically for weakly periodic 
media using multiple-scales perturbation [18]. In these references, enhancements, 
over an equivalent length of phase matched bulk material, of two to three orders of 
magnitude in power levels of the generated second harmonic when the funda- 
mental was tuned near the photonic band edge were reported. These results 
provide strong motivation for further investigation and application of such 
structures. There are three reasons for the unusually strong nonlinear optical 
response. First the field amplitudes are enhanced owing to resonance effects, 
second the transmission factor is large so that most of the fundamental energy is 
transmitted (also in [17] the second harmonic is tuned near the second-order band 
edge), and third the group velocity at the band edge is small so that the 
fundamental field spends more time inside the structure which provides greater 
conversion efficiency. 

Third-order processes have also gained attention in PBG-type materials 
with investigations into gap-soliton propagation and optical switching [ 19-29]. 
An interesting application involving a x ( ~ )  process was the nonlinear optical 
diode in [30, 311 where optical transmission was dependent on the direction of 
propagation. Recently three different one-dimensional PBG structures were 
investigated for their optical limiting abilities [32], and in the investigation of a 
quarter-wavelength type structure, good broad-band limiting properties of a 63- 
layer structure with modest linear index modulation but nonlinear coefficients of 
equal value but opposite sign in the adjacent layers were numerically found. The  
limiting process was accomplished through strong reflectivity at high incident 
intensities. 

In the present article we numerically further investigate the nonlinear 
optical properties of PBG structures with an emphasis on the question of how 
the nonlinear response compares with the bulk response of the nonlinear 
constituent. Unlike in [17, 321 we shall consider systems where only one of 
the materials possesses the dominant nonlinear response. Also we shall 
concentrate on deep index modulations, with relatively weak nonlinearities, 
where properties such as reflection and transmission are relatively unaffected 
by the nonlinear interactions occurring inside the structure, unlike 
~ 3 2 1 .  
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Enhanced third-order nonlinear optical response of PBG materials 1063 

2. Method of calculation 
We consider plane waves of linear polarization propagating in the direction 

perpendicular to the plane of the layers in the multilayered PBG structure. The  
structures considered are composed of N layer pairs with only one of the 
constituents having a third-order Kerr optical nonlinearity. Initially we consider 
the material with only the linear response as constituent a and the material with the 
third-order nonlinearity is denoted constituent b. The  refractive index for the b 
layers is given by 

where i i 2  is the nonlinear refractive index. Initially the zeroth-order field magni- 
tudes throughout the structure are calculated using the incident field magnitude 
and assuming that no nonlinearities present. Also we shall suppress the explicit w 
notation as it is understood that all field quantities are oscillating at the same 
optical frequency. 

The field solutions are arrived at by requiring that the electromagnetic 
boundary conditions of continuity of the tangential components of E and H, 
with E and H plane wave solutions to Maxwell's equations in each layer, be 
satisfied simultaneously at each of the 2N + 1 boundaries. The  incident E and H 
fields are considered to have a fixed amplitude. The unknown H fields are 
expressed in terms of the E fields using the plane-wave relation 

H = nk x E .  

For the zeroth-order solution this leads to the matrix equation 

AF = Fo, (3) 
where A is a (4N + 2 )  x (4N + 2 )  matrix representing the two boundary con- 
ditions at each interface, F is a vector representing all the unknown electric field 
amplitudes including the backward-travelling amplitudes (two per 2N layers plus 
reflected and transmitted; 4N + 2 in all) and FO is the vector that represents the 
known input amplitudes which for this case is just the incident E and H fields. 
This approach is equivalent to the transfer matrix technique and details may be 
found elsewhere [l]. 

The field amplitudes from the zeroth order solution are used to calculate the 
first-order correction to the refractive indices in the nonlinear layers. Considering 
the field in layer j in more detail, we write 

where a prime denotes a backward-travelling wave quantity, k = nw/c and 
k' = ntw/c. The refractive indices in the expressions for the wavenumbers include 
both the linear and the nonlinear contributions and, as we explain below, are 
generally different for the forward- and backward-moving waves. The  scalar 
amplitudes are those at the top of layer j and the exponentials describe the spatial 
variation within the layer. When proper account is taken of the spatial dependences 
of all the terms in the full expression for IEoj12, it is noted that only the terms which 
contain the same spatial dependence of the moving wave should be retained [33]. 
Therefore, for the forward moving wave, we have 
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1064 R .  L .  Nelson and R.  W .  Boyd 

and for the backward-travelling wave 

as the expressions for the refractive indices. The  differing indices for the two waves 
arise out of the unequal strengths of self- and cross-phase modulation as has been 
described in [33, 341. Previous work [32] does not seem to have maintained the 
distinction. Also we use the slowly varying amplitude approximation as we are not 
necessarily interested in the strong nonlinear limit. Once the new nbj and nAj are 
calculated, another self-consistent solution is achieved by a second iteration of 
equation (3) using the new values of the layer indices separately for the forward- 
and backward-travelling waves. This first order solution for the fields is usually 
accurate enough in the weakly nonlinear limit (either weak field or weak n2) to be 
used as a representation for the nonlinear material response. In some situations, 
however, we may gain accuracy by continuing the iteration process until a 
convergence to within specified limits is achieved. This can be noticeable at higher 
field strengths or nonlinearities. At higher field strengths or nonlinearities, the 
solution begins an oscillatory behaviour with the number of iterations; that is it 
does not converge to a single solution. At lower nonlinear interaction levels the 
solution asymptotically converges to a steady value. When there is asymptotic 
behaviour in the solution, then it is assumed that the answer provided for the 
nonlinear response is satisfactory while oscillatory solutions are avoided. The  
oscillatory solution may indicate an underlying dynamical instability, but we have 
not yet verified that hypothesis. 

3.1 . Non-dissipative photonic bandgap structures 
By using the procedure described above, the field magnitudes in all layers 

including the exiting field can be determined. The  algorithm provides amplitudes 
and phases for all fields and allows consideration of the nonlinear phase shift on 
passage of the incident wave through a nonlinear medium. By comparing the 
nonlinear phase shift between PBG structures and homogeneous media, the 
relative effective nonlinearity of the PBG can be determined. Of particular interest 
is whether the nonlinear phase shift is larger on passage through a PBG material 
than on passage through a homogeneous film of equivalent total thickness. 

All calculations are performed assuming a fixed incident wavelength of 1.06 pm 
and all layers are assumed to be lossless dielectrics. The  surrounding medium has 
an index of 1.0 and initially the indices of the two constituents are set at n, = 1.5 
and ?zb = 2.0 with material b being the Kerr active medium. There are ten layer 
pairs and as a first example the thickness of material a (the low-index linear 
medium) is varied as the independent variable. The index in the nonlinear active 
layer is described as 

where in performing this calculation we have assumed that the intensity of the 
incident light was adjusted so that 2ii21E0l2 = 

Figure 1 displays three curves; the nonlinear phase shift through the PBG 
structure, the nonlinear phase shift through a homogeneous film constructed with 
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Enhanced third-order nonlinear optical response of PBG materials 1065 

2.4 2.8 3.2 3.6 4 

Total Thickness of PBG Structure or Homogeneous Film (microns) 
Figure 1. Nonlinear phase shift produced by a PBG structure as compared with that of 

a homogeneous film of the nonlinear constituent with the same total thickness as the 
PBG structure. The  broken curve is a plot of the transmittance used to locate the 
position of the band edge. The thickness of the high-index nonlinear component is 
set at the quarter-wave thickness and the thickness of the low-index layer is allowed 
to vary in the PBG structure. 

material b of the same total thickness as the PBG structure, and a plot of the 
transmittance of the PBG structure to display qualitatively where the band edge 
and bandgap are located. As might be inferred from the results of [17], there is an 
enhancement of the nonlinear phase shift at the band edge of the PBG material 
over the response of the homogeneous layer. Since forward degenerate four-wave 
mixing (DFWM) is an automatically phase-matched process, some features pres- 
ent in harmonic generation do not appear. Together with phase matching, there is 
no 'extra' enhancement by tuning the harmonic to a higher-order band edge; 
therefore the maximum achievable enhancement with DFWM is probably smaller. 
Certainly the high transmittance and the resonantly enhanced fields inside the 
high-index layers are contributing to the enhancement. 

Further investigation shows that the size of the enhancement effect increases 
with increasing number of layer pairs and with increasing depth of the index 
differential. The  relative-thicknesses of the individual layers can vary considerably 
around the quarter-wave thickness and still provide bandgap effects. This latitude 
in PBG design can provide for better enhancements in PBG structures. T h e  
optimum enhancement of the nonlinear phase shift, in the ten-layer-pair structure 
that we described above, occurred when the low-index layer was approximately 
65% of its quarter-wave thickness and the nonlinear high-index layer was approxi- 
mately 110%~ of its quarter-wave thickness. All quarter-wave thicknesses in this 
paper are defined with respect to the zeroth-order refractive indices of the layers. 

The  next example (figure 2) considers the alternative arrangement where we 
assume that the nonlinear constituent is the low-index dielectric layer. Now the 
enhancement occurs at the opposite band edge and, when optimized, the enhance- 
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12 I , I I I I I I I 

2.4 2.8 3.2 3.6 4 
Total Thickness of PBG Structure or Homogeneous Film (microns) 

Figure 2. PBG nonlinear phase shift enhancement with the low-index constituent as the 
nonlinear material, optimized for maximum enhancement. The broken curve is the 
transmittance. The thickness of the high-index constituent is set at 85% of its 
quarter-wave thickness while the low-index layer thickness is allowed to vary for 
the PBG structure. As in figure 1, the homogeneous film has a thickness equal to 
the total thickness of the PBG structure and is considered to be composed of the 
nonlinear constituent. 

ment is larger than before. Optimization is achieved by setting the high-index 
passive layer to 85% of its quarter-wave thickness and the low-index nonlinear 
layer to 140% of the quarter-wave thickness. Enhancement by a factor of 
approximately six over the homogeneous material is seen while a maximum 
enhancement factor of about four was observed when the nonlinear constituent 
was the high-index layer. It is clear from these results that PBG structures can 
provide enhancements in the nonlinear phase shift in a manner similar to the 
reported enhancement in SHG. 

3 . 2 .  Nonlinear absorption in photonic bandgap structures 
We see that band edge enhancements in lossless dielectric structures can be 

large and potentially useful. Alternatively there has been interest in nonlinear 
absorbing materials, especially in the application of optical limiting. We would 
expect that, since nonlinear absorption is described by an imaginary ~ ( ~ 1 ,  there is 
reason to expect similar enhancement of the nonlinear absorption. Two-photon 
absorption materials are promising as a means for optical limiting and are modelled 
as a positive imaginary contribution to the nonlinear refractive index. The  action 
of a two-photon absorber is then to provide an intensity-dependent absorption 
coefficient that increases with increasing intensity. We now investigate whether a 
PBG-type material can also enhance the intensity-dependent absorption. 

The nonlinear layers (low-index layers) have indices represented by the 
equations 
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PBG Structure 

',,, Homogeneous Film 

I I I 

2.4 2.8 3.2 3.6 4 
Total Thickness of PBG Structure or Homogeneous Film (microns) 

Figure 3. Change in the transmittance due to nonlinear absorption in the sample. The 
low-index layer is the nonlinear constituent and is allowed to vary in thickness. The 
high-index layer thickness is held constant at 85% of its quarter-wave thickness in 
the PBG structure. The thickness of the homogeneous layer is equal to the total 
thickness of the PBG structure. The homogeneous layer is composed of the low- 
index nonlinear constituent. 

where i i 2  is a complex number, the imaginary part of which describes nonlinear 
absorption. In order to avoid the possibility that the real part of i i 2  (nonlinear 
index) could affect the magnitude of the output field, it is set to zero in order to 
isolate the effects of nonlinear absorption. Calculations are performed as before 
with several iterations done in order to ensure convergence of the solution. In this 
case, however, it is the magnitude of the output field and not the phase that is of 
interest. The  linear indices of the constituent layers are assumed to be purely real, 
possibly modelling a non-resonant nonlinearity, and set at na = 1.5 and nb = 2.0 
and again there are ten layer pairs. As expected (figure 3), there is a band edge 
enhancement of the nonlinear absorption. The enhancement factor is about the 
same as in the nonlinear phase shift example. 

3 . 3 .  Photonic bandgap structures with a central phase slip 
There have been previous investigations into PBG structures containing a 

central region of thickness different from those of the other layers [ll-13, 28, 291 
with reported enhancements of second-harmonic generation in particular [l 1-1 31. 
It is interesting to ask how the calculation that we have performed above is affected 
by the introduction of a central nonlinear active layer that is of different thickness 
from the other nonlinear layers. For consideration we take again the nonlinear 
constituent to be the lower refractive index layer and introduce a 0.5 pm low-index 
nonlinear active central layer surrounded on either side by 5 layer pairs of PBG- 
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curve is the transmittance. In the PBG material surrounding the central active 
region, the high-index layers were held fixed at 85% of their quarter-wave thickness 
and the low-index nonlinear layers were allowed to vary in thickness. 

type material. The high index layer thickness was set at 85% of its quarter-wave 
thickness and, as can be seen from figure 4, maximum enhancement occurs when 
the low-index nonlinear material is approximately 120% of its quarter-wave 
thickness. Also apparent is the fact that the magnitude of the enhancement has 
increased to a factor of about 30 over an equivalent thickness homogeneous layer of 
material a. The largest enhancement occurs at the new propagation mode intro- 
duced into the bandgap. The enhancement here is analogous to the enhanced SHG 
reported in [12, 131 and related to the results in [29, 301. Note that there is still an 
enhancement at the right band edge. 

It appears that, if an attempt is made to provide maximum possible enhance- 
ment of the nonlinear response over a homogeneous material, the best situations 
may not be limited to strictly periodic materials. The  optimization problem here is 
more complex since there are more degrees of freedom in the design. 

4. Conclusions 
PBG materials are potentially useful materials for the development of material 

systems with an enhanced nonlinear response. We have numerically demonstrated 
a considerable enhancement in the nonlinear refractive index at the photonic band 
edge over equivalent homogeneous materials. Band edge enhancements have also 
been shown to exist for SHG [17, 181. Greater enhancements in the third-order 
nonlinearity seem possible in PBG structures with a central phase slip, or defect 
mode. Our results indicate an enhancement of a factor of 30, with no attempt to 
optimize all the physical parameters involved, in such a structure. It is likely that 
greater application for these structures will be found in future work. 
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